
Charles, A. J. et al. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochem. Geophys. Geosyst. 12, Q0AA17 (2011).
Google Scholar
Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochem. Geophys. Geosyst. 8, Q12002 (2007).
Zeebe, R. E. & Lourens, L. J. Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science 365, 926–929 (2019).
Google Scholar
McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).
Google Scholar
Zhu, J., Poulsen, C. J. & Tierney, J. E. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Sci. Adv. 5, eaax1874 (2019).
Google Scholar
Tierney, J. E. et al. Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum. Proc. Natl Acad. Sci. 119, e2205326119 (2022).
Google Scholar
Zachos, J. C. et al. Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science 308, 1611–1615 (2005).
Google Scholar
Yao, W., Paytan, A. & Wortmann, U. G. Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum. Science 361, 804–806 (2018).
Google Scholar
Mariani, E. et al. Large Igneous Province Control on Ocean Anoxia and Eutrophication in the North Sea at the Paleocene–Eocene Thermal Maximum. Paleoceanogr. Paleoclimatol. 39, e2023PA004756 (2024).
Google Scholar
Yao, W. et al. Expanded subsurface ocean anoxia in the Atlantic during the Paleocene-Eocene Thermal Maximum. Nat. Commun. 15, 9053 (2024).
Google Scholar
Wu, Q. et al. Biogeochemical responses to global warming during the Paleocene–Eocene Thermal Maximum in the eastern Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 636, 111969 (2023).
Rush, W. D., Kiehl, J. T., Shields, C. A. & Zachos, J. C. Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory. Palaeogeogr. Palaeoclimatol. Palaeoecol. 568, 110289 (2021).
Kiehl, J. T., Zarzycki, C. M., Shields, C. A. & Rothstein, M. V. Simulated changes to tropical cyclones across the Paleocene-Eocene Thermal Maximum (PETM) boundary. Palaeogeogr., Palaeoclimatol., Palaeoecol. 572, 110421 (2021).
Google Scholar
Cui, Y. et al. Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. Nat. Geosci. 4, 481–485 (2011).
Google Scholar
Gutjahr, M. et al. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548, 573–577 (2017).
Google Scholar
Jones, S. M., Hoggett, M., Greene, S. E. & Jones, T. D. Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change. Nat. Commun. 10, 1–16 (2019).
Google Scholar
Gernon, T. M. et al. Transient mobilization of subcrustal carbon coincident with Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 15, 573–579 (2022).
Jones, M. T. et al. Mercury anomalies across the Palaeocene–Eocene thermal maximum. Clim. Past 15, 217–236 (2019).
Bowen, G. J. & Zachos, J. C. Rapid carbon sequestration at the termination of the Palaeocene-Eocene Thermal Maximum. Nat. Geosci. 3, 866–869 (2010).
Google Scholar
Penman, D. E. Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum. Geology 44, 731–734 (2016).
Google Scholar
Bowen, G. J. et al. Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum. Nat. Geosci. 8, 44–47 (2015).
Google Scholar
Babila, T. L. et al. Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum. Sci. Adv. 8, eabg1025 (2022).
Google Scholar
Crouch, E. M., Brinkhuis, H., Visscher, H., Adatte, T. & Bolle, M.-P. Late Paleocene-early Eocene dinoflagellate cyst records from the Tethys; further observations on the global distribution of Apectodinium. In: Geol. Soc. Am. Spec. Pap. (eds Wing, S. L., Gingerich, P. D., Schmitz B. & Thomas E.) 369, (2003).
Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1221 (2007).
Google Scholar
Tremblin, M. et al. Mercury enrichments of the Pyrenean foreland basins sediments support enhanced volcanism during the Paleocene-Eocene thermal maximum (PETM). Glob. Planet. Change 212, 103794 (2022).
Stokke, E. W. et al. Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea. Clim. Past 17, 1989–2013 (2021).
Bowen, G. J. et al. Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum. Nat. Geosci. 8, 44–47 (2015).
Google Scholar
Bralower, T. J. et al. Impact of dissolution on the sedimentary record of the Paleocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 401, 70–82 (2014).
Google Scholar
Zeebe, R. E., Westerhold, T., Littler, K. & Zachos, J. C. Orbital forcing of the Paleocene and Eocene carbon cycle. Paleoceanography 32, 440–465 (2017).
Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005).
Google Scholar
Zeebe, R. E., Ridgwell, A. & Zachos, J. C. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9, 325–329 (2016).
Google Scholar
Wieczorek, R., Fantle, M. S., Kump, L. R. & Ravizza, G. Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum. Geochim. Cosmochim. Acta 119, 391–410 (2013).
Google Scholar
Jiang, J. et al. Eustatic change across the Paleocene-Eocene Thermal Maximum in the epicontinental Tarim seaway. Glob. Planet. Change 229, 104241 (2023).
Google Scholar
Kaya, M. Y. et al. The Eurasian epicontinental sea was an important carbon sink during the Palaeocene-Eocene thermal maximum. Commun. Earth Environ. 3, 124 (2022).
Google Scholar
Wang, Y. et al. Response of calcareous nannoplankton to the Paleocene–Eocene Thermal Maximum in the Paratethys Seaway (Tarim Basin, West China). Glob. Planet. Change 217, 103918 (2022).
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl Acad. Sci. 107, 5738–5743 (2010).
Google Scholar
Cui, Y. & Schubert, B. A. Towards determination of the source and magnitude of atmospheric pCO2 change across the early Paleogene hyperthermals. Glob. Planet. Change 170, 120–125 (2018).
Google Scholar
Knauth, L. P. & Kennedy, M. J. The late Precambrian greening of the Earth. Nature 460, 728–732 (2009).
Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).
Google Scholar
Bralower, T. J. et al. Evidence for shelf acidification during the onset of the Paleocene-Eocene Thermal Maximum. Paleoceanogr. Paleoclimatology 33, 1408–1426 (2018).
Google Scholar
Naafs, B. D. A. et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 9, 135–139 (2016).
Google Scholar
De Palma, M. et al. Stable isotopes of black carbon and their implications to paleoclimate in the eastern Tethys during the PETM. Palaeogeogr., Palaeoclimatol., Palaeoecol. 663, 112794 (2025).
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., van Duin, A. C. T. & Geenevasen, J. A. J. Crenarchaeol. J. Lipid Res. 43, 1641–1651 (2002).
Google Scholar
Qin, W. et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proc. Natl Acad. Sci. 112, 10979–10984 (2015).
Google Scholar
Summons R., Jahnke L., Hope J., Logan G. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).
Newman, D. K., Neubauer, C., Ricci, J. N., Wu, C.-H. & Pearson, A. Cellular and molecular biological approaches to interpreting ancient biomarkers. Annu. Rev. Earth Planet. Sci. 44, 493–522 (2016).
Google Scholar
Ricci, J. N. et al. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J. 8, 675–684 (2014).
Google Scholar
Schaefer, B. et al. Paleoenvironmental evolution during the Early Eocene Climate Optimum in the Chicxulub impact crater. Earth Planet. Sci. Lett. 589, 117589 (2022).
Google Scholar
Garby, T. J. et al. Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme sensitive to osmotic and pH stress. Appl. Environ. Microbiol. 83, e00777–00717 (2017).
Google Scholar
Xie, S., Pancost, R. D., Yin, H., Wang, H. & Evershed, R. P. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434, 494–497 (2005).
Google Scholar
Kasprak, A. H. et al. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43, 307–310 (2015).
Naafs, B. D. A., Bianchini, G., Monteiro, F. M. & Sánchez-Baracaldo, P. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. Geobiology 20, 41–59 (2022).
Google Scholar
Kuypers, M. M., van Breugel, Y., Schouten, S., Erba, E. & Damsté, J. S. S. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32, 853–856 (2004).
Google Scholar
Cullers, R. L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem. Geol. 191, 305–327 (2002).
Google Scholar
Wedepohl, K. H. Manganese: abundance in common sediments and sedimentary rocks. Handb. Geochem.: Berl., Springe. 2, 1–17 (1978).
Tribovillard, N., Algeo, T., Lyons, T. & Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 232, 12–32 (2006).
Google Scholar
Zhou, X., Thomas, E., Rickaby, R., Winguth, A. & Lu, Z. I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography 29, 964–975 (2014).
Google Scholar
Schoon, P. L., Heilmann-Clausen, C., Schultz, B. P., Damsté, J. S. S. & Schouten, S. Warming and environmental changes in the eastern North Sea Basin during the Palaeocene–Eocene Thermal Maximum as revealed by biomarker lipids. Org. Geochem. 78, 79–88 (2015).
Google Scholar
Stein, R., Boucsein, B. & Meyer, H. Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge. Geophys. Res. Lett. 33, L18606 (2006).
Stassen, P., Thomas, E. & Speijer, R. P. Paleocene–Eocene Thermal Maximum environmental change in the New Jersey Coastal Plain: benthic foraminiferal biotic events. Mar. Micropaleontol. 115, 1–23 (2015).
Google Scholar
Sluijs, A. et al. Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Clim. Past 10, 1421–1439 (2014).
Behrooz, L. et al. North-East Peri-Tethyan Water Column Deoxygenation and Euxinia at the Paleocene Eocene Thermal Maximum. Paleoceanogr. Paleoclimatol. 39, e2023PA004828 (2024).
Google Scholar
Dong, Y. et al. Paleoenvironment reconstruction of the eastern Tethys during the pre-onset excursion preceding the PETM. Palaeogeograph. Palaeoclimatol. Palaeoecol. 647, 112234 (2024).
Kender, S. et al. Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nat. Commun. 12, 1–10 (2021).
Google Scholar
Fendley, I. M. et al. Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models. Earth Planet. Sci. Lett. 524, 115721 (2019).
Google Scholar
Denis, E. H., Pedentchouk, N., Schouten, S., Pagani, M. & Freeman, K. H. Fire and ecosystem change in the Arctic across the Paleocene–Eocene Thermal Maximum. Earth Planetary Sci. Lett. 467, 149–156 (2017).
Moore, E. A. & Kurtz, A. C. Black carbon in Paleocene–Eocene boundary sediments: A test of biomass combustion as the PETM trigger. Palaeogeogr., Palaeoclimatol., Palaeoecol. 267, 147–152 (2008).
Google Scholar
Collinson, M. E., Steart, D., Scott, A., Glasspool, I. & Hooker, J. Episodic fire, runoff and deposition at the Palaeocene–Eocene boundary. J. Geol. Soc. 164, 87–97 (2007).
Google Scholar
Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63–66 (2012).
Google Scholar
Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Sci. Rev. 196, 102880 (2019).
Google Scholar
Jones, M. T. et al. Tracing North Atlantic volcanism and seaway connectivity across the Paleocene–Eocene Thermal Maximum (PETM). Clim. Past 19, 1623–1652 (2023).
Storey, M., Duncan, R. A. & Swisher, I. I. I. C. C. Paleocene-Eocene thermal maximum and the opening of the northeast Atlantic. Science 316, 587–589 (2007).
Google Scholar
Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).
Google Scholar
Wilkinson, C. M., Ganerød, M., Hendriks, B. W. & Eide, E. A. Compilation and appraisal of geochronological data from the North Atlantic Igneous Province (NAIP). Geol. Soc., Lond., Spec. Publ. 447, 69–103 (2017).
Google Scholar
Larsen, R. B. & Tegner, C. Pressure conditions for the solidification of the Skaergaard intrusion: Eruption of East Greenland flood basalts in less than 300,000years. Lithos 92, 181–197 (2006).
Google Scholar
Dickson, A. J. et al. Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 300–307 (2015).
Google Scholar
Liu, Z. et al. Assessing the Contributions of Comet Impact and Volcanism Towards the Climate Perturbations of the Paleocene–Eocene Thermal Maximum. Geophys. Res. Lett. 46, 14798–14806 (2019).
Berndt, C. et al. Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 16, 803–809 (2023).
Frieling, J. et al. Thermogenic methane release as a cause for the long duration of the PETM. Proc. Natl. Acad. Sci. 113, 12059–12064 (2016).
Google Scholar
Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nat. Geosci. 2, 576–580 (2009).
Google Scholar
Turner, S. K. Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 376, 20170082 (2018).
Google Scholar
Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et. Cosmochimica Acta 44, 649–661 (1980).
Google Scholar
Niemann, H. & Elvert, M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org. Geochem. 39, 1668–1677 (2008).
Google Scholar
Blumenberg, M., Seifert, R., Reitner, J., Pape, T. & Michaelis, W. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc. Natl. Acad. Sci. 101, 11111–11116 (2004).
Google Scholar
Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 357–369 (2014).
Google Scholar
Kirtland Turner, S. & Ridgwell, A. Recovering the true size of an Eocene hyperthermal from the marine sedimentary record. Paleoceanography 28, 700–712 (2013).
Google Scholar
Li, M., Hinnov, L. & Kump, L. Acycle: Time-series analysis software for paleoclimate research and education. Comput. Geosci. 127, 12–22 (2019).
Google Scholar
Kodama K. P., Hinnov L. A. Rock magnetic cyclostratigraphy. John Wiley & Sons (2014).
Li, M. et al. Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain. Nat. Commun. 13, 5618 (2022).
Google Scholar
Thomson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).
Google Scholar
Meyers, S. R. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography 30, 1625–1640 (2015).
Google Scholar
Molnia, B. F. A rapid and accurate method for the analysis of calcium carbonate in small samples. J. Sediment. Res. 44, 589–590 (1974).
Google Scholar
Eiler, J. M. Clumped-isotope” geochemistry: The study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262, 309–327 (2007).
Google Scholar
Bernasconi, S. M. et al. InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosys. 22, e2020GC009588 (2021).
Google Scholar
Anderson, N. et al. A unified clumped isotope thermometer calibration (0.5–1100 C) using carbonate-based standardization. Geophys. Res. Lett. 48, e2020GL092069 (2021).
Google Scholar
Hopmans, E. C., Schouten, S. & Damsté, J. S. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).
Google Scholar
Mackenzie, A. S., Patience, R. L., Maxwell, J. R., Vandenbroucke, M. & Durand, B. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Cosmochim. Acta. 44, 1709–1721 (1980).
Google Scholar
Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry. Org. Geochem. 35, 567–571 (2004).
Google Scholar
Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta. 74, 4639–4654 (2010).
Google Scholar
Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat. Geosci. 3, 196–200 (2010).
Google Scholar
Bice, K. L., Barron, E. J. & Peterson, W. H. Reconstruction of realistic early Eocene paleobathymetry and ocean GCM sensitivity to specified basin configuration. Oxf. Monogr. Geol. Geophys. 39, 227–250 (1998).
Kirtland Turner, S. & Ridgwell, A. Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM. Earth Planet. Sci. Lett. 435, 1–13 (2016).
Google Scholar
Jiang S., et al. Dataset for “Millennial-timescale thermogenic CO2 release preceding the Paleocene-Eocene Thermal Maximum. (2025).
Ridgwell A., et al. derpycode/cgenie.muffin: v0.9. (2022).
Jiang S., et al. Model Configuration for “Millennial-timescale volcanic CO2 release prior to the Paleocene-Eocene Thermal Maximum”. (2025).
Lippert, P. C., van Hinsbergen, D. J. J. & Dupont-Nivet, G. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. In: Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. (eds Nie, J., Horton, B. K. & Hoke, G. D.) Geol. Soc. Am. Spec. Pap. 369, 1–21 (2014).
Hay, W. W. et al. Alternative global Cretaceous paleogeography. In: Evolution of the Cretaceous Ocean-Climate System (eds Barrera, E. & Johnson, C. C.). Geol. Soc. Am. Spec. Pap. 332, 1–47 (1999).
Bolle, M. P. et al. The Paleocene-Eocene transition in the marginal northeastern Tethys (Kazakhstan and Uzbekistan). Geologische Rundsch. Int. J. Earth Sci. 89, 390–414 (2000).
Google Scholar
Shcherbinina, E. et al. Environmental dynamics during the Paleocene–Eocene thermal maximum (PETM) in the northeastern Peri-Tethys revealed by high-resolution micropalaeontological and geochemical studies of a Caucasian key section. Palaeogeogr. Palaeoclimatol. Palaeoecol. 456, 60–81 (2016).
Google Scholar
Frieling, J. et al. Paleocene–Eocene warming and biotic response in the epicontinental West Siberian Sea. Geology 42, 767–770 (2014).
Google Scholar
Zhang, Q., Wendler, I., Xu, X., Willems, H. & Ding, L. Structure and magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum. Gondwana Res. 46, 114–123 (2017).
Google Scholar
Li, J., Hu, X., Garzanti, E. & BouDagher-Fadel, M. Shallow-water carbonate responses to the Paleocene–Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): Tectonic and climatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 153–165 (2017).
Google Scholar
Jin, S. et al. Large-scale, astronomically paced sediment input to the North Sea Basin during the Paleocene Eocene Thermal Maximum. Earth Planet. Sci. Lett. 579, 117340 (2022).
Google Scholar
Jin, S. et al. Mercury isotope evidence for protracted North Atlantic magmatism during the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett. 602, 117926 (2023).
Google Scholar
Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006).
Google Scholar
Stassen, P., Thomas, E. & Speijer, R. P. Integrated stratigraphy of the Paleocene-Eocene thermal maximum in the New Jersey Coastal Plain: Toward understanding the effects of global warming in a shelf environment. Paleoceanography 27, PA4210 (2012).
Zachos, J. C. et al. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data. Geology 34, 737–740 (2006).
Google Scholar
Kent, D. V. et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett. 211, 13–26 (2003).
Google Scholar
John, C. M. et al. North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography 23, PA2217 (2008).
Self-Trail, J. M., Powars, D. S., Watkins, D. K. & Wandless, G. A. Calcareous nannofossil assemblage changes across the Paleocene–Eocene Thermal Maximum: Evidence from a shelf setting. Mar. Micropaleontol. 92, 61–80 (2012).
Google Scholar
Self-Trail, J. M. et al. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA. Paleoceanography 32, 710–728 (2017).
Google Scholar