
Hsu, Y. C., Huang, D. Q. & Nguyen, M. H. Global burden of hepatitis B virus: current status, missed opportunities and a call for action. Nat. Rev. Gastroenterol. Hepatol. 20, 524–537 (2023).
Google Scholar
Yuen, M. F. et al. Hepatitis B virus infection. Nat. Rev. Dis. Prim. 4, 18035 (2018).
Google Scholar
Iannacone, M. & Guidotti, L. G. Immunobiology and pathogenesis of hepatitis B virus infection. Nat. Rev. Immunol. 22, 19–32 (2022).
Google Scholar
Jiang, Y., Han, Q., Zhao, H. & Zhang, J. The mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatocell. Carcinoma 8, 435–450 (2021).
Google Scholar
Howell, J. et al. Pathway to global elimination of hepatitis B: HBV cure is just the first step. Hepatology 78, 976–990 (2023).
Google Scholar
Wang, W. et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat. Nanotechnol. 15, 406–416 (2020).
Google Scholar
Mahmood, F. et al. HBV vaccines: advances and development. Vaccines (Basel) 11, 1862 (2023).
Mwangi, I. A. et al. Assessment of hepatitis B vaccination status and hepatitis B surface antibody titres among health care workers in selected public health hospitals in Kenya. PLOS Glob. Public Health 3, e0001741 (2023).
Google Scholar
Meier, M. A. & Berger, C. T. A simple clinical score to identify likely hepatitis B vaccination non-responders – data from a retrospective single center study. BMC Infect. Dis. 20, 891 (2020).
Google Scholar
Roberts, H. et al. Prevalence of HBV infection, vaccine-induced immunity, and susceptibility among at-risk populations: US Households, 2013–2018. Hepatology 74, 2353–2365 (2021).
Google Scholar
LaMori, J. et al. Hepatitis vaccination adherence and completion rates and factors associated with low compliance: a claims-based analysis of U.S. adults. PLoS One 17, e0264062 (2022).
Google Scholar
Khandekar, M. J., Cohen, P. & Spiegelman, B. M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 11, 886–895 (2011).
Google Scholar
Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).
Google Scholar
Sung, W. K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet 44, 765–769 (2012).
Google Scholar
Péneau, C., Zucman-Rossi, J. & Nault, J. C. Genomics of viral hepatitis-associated liver tumors. J. Clin. Med. 10, 1827 (2021).
Zhao, L. et al. Analysis of viral integration reveals new insights of oncogenic mechanism in HBV-infected intrahepatic cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma. Hepatol. Int 16, 1339–1352 (2022).
Google Scholar
Zong, L. et al. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nat. Commun. 10, 221 (2019).
Google Scholar
Dimitriadis, K., Katelani, S., Pappa, M., Fragkoulis, G. E. & Androutsakos, T. The role of interleukins in HBV infection: a narrative review. J. Pers. Med. 13, 1675 (2023).
Kostyusheva, A., Brezgin, S., Glebe, D., Kostyushev, D. & Chulanov, V. Host-cell interactions in HBV infection and pathogenesis: the emerging role of m6A modification. Emerg. Microbes Infect. 10, 2264–2275 (2021).
Google Scholar
Carty, M., Guy, C. & Bowie, A. G. Detection of viral infections by innate immunity. Biochem Pharm. 183, 114316 (2021).
Google Scholar
Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).
Google Scholar
Rossi, M. et al. Phenotypic CD8 T cell profiling in chronic hepatitis B to predict HBV-specific CD8 T cell susceptibility to functional restoration in vitro. Gut 72, 2123–2137 (2023).
Google Scholar
Andreata, F. et al. Therapeutic potential of co-signaling receptor modulation in hepatitis B. Cell 187, 4078–4094 e4021 (2024).
Google Scholar
Khanam, A., Chua, J. V. & Kottilil, S. Immunopathology of chronic hepatitis B infection: role of innate and adaptive immune response in disease progression. Int J. Mol. Sci. 22, 5497 (2021).
Gao, Y. et al. HBV-associated hepatocellular carcinomas inhibit antitumor CD8(+) T cell via the long noncoding RNA HDAC2-AS2. Nat. Commun. 16, 2055 (2025).
Google Scholar
Ye, B. et al. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 6, e1694 (2015).
Google Scholar
Marotel, M. et al. Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. Elife 10, e60095 (2021).
Vyas, A. K., Jindal, A., Hissar, S., Ramakrishna, G. & Trehanpati, N. Immune balance in hepatitis B infection: present and future therapies. Scand. J. Immunol. 86, 4–14 (2017).
Google Scholar
Kawanaka, M., Nishino, K., Kawamoto, H. & Haruma, K. Hepatitis B: who should be treated?-managing patients with chronic hepatitis B during the immune-tolerant and immunoactive phases. World J. Gastroenterol. 27, 7497–7508 (2021).
Google Scholar
Li, Z. et al. Histologic changes in immune-tolerant patients with chronic hepatitis B: a systematic review and meta-analysis. Sci. Rep. 13, 469 (2023).
Google Scholar
Chen, Y. & Tian, Z. HBV-induced immune imbalance in the development of HCC. Front. Immunol. 10, 2048 (2019).
Google Scholar
Kumar, M. et al. Virologic and histologic features of chronic hepatitis B virus-infected asymptomatic patients with persistently normal ALT. Gastroenterology 134, 1376–1384 (2008).
Google Scholar
Levrero, M. & Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 64, S84–s101 (2016).
Google Scholar
Chuang, S. C. et al. Interaction between cigarette smoking and hepatitis B and C virus infection on the risk of liver cancer: a meta-analysis. Cancer Epidemiol. Biomark. Prev. 19, 1261–1268 (2010).
Google Scholar
Sayiner, M., Golabi, P. & Younossi, Z. M. Disease burden of hepatocellular carcinoma: a global perspective. Dig. Dis. Sci. 64, 910–917 (2019).
Google Scholar
Landrum, M. L. et al. Hepatitis B vaccination and risk of hepatitis B infection in HIV-infected individuals. AIDS 24, 545–555 (2010).
Google Scholar
Arboatti, A. S. et al. Diethylnitrosamine increases proliferation in early stages of hepatic carcinogenesis in insulin-treated type 1 diabetic mice. Biomed. Res Int 2018, 9472939 (2018).
Google Scholar
Kumar, A. et al. Piperlongumine inhibits diethylnitrosamine induced hepatocellular carcinoma in rats. Hum. Exp. Toxicol. 41, 9603271211073593 (2022).
Google Scholar
Park, J. H. et al. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat. Commun. 15, 4099 (2024).
Google Scholar
Sendra, L., Herrero, M. J. & Alino, S. F. Translational advances of hydrofection by hydrodynamic injection. Genes (Basel) 9, 136 (2018).
Suda, T. et al. Hydrodynamic delivery: characteristics, applications, and technological advances. Pharmaceutics 15, 1111 (2023).
Park, J. H. et al. Nuclear IL-33/SMAD signaling axis promotes cancer development in chronic inflammation. EMBO J. 40, e106151 (2021).
Google Scholar
Miller, A. M. Role of IL-33 in inflammation and disease. J. Inflamm. (Lond.) 8, 22 (2011).
Google Scholar
You, Y. et al. Phyllanthin prevents diethylnitrosamine (DEN) induced liver carcinogenesis in rats and induces apoptotic cell death in HepG2 cells. Biomed. Pharmacother. 137, 111335 (2021).
Google Scholar
Naylor, G. et al. Immunogenic death of hepatocellular carcinoma cells in mice expressing caspase-resistant ROCK1 is not replicated by ROCK inhibitors. Cancers (Basel) 14, 5943 (2022).
Kim, S. et al. Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Mol. Med 19, 88–98 (2013).
Google Scholar
Jiang, C. et al. Association between the HMGB1/TLR4 signaling pathway and the clinicopathological features of ovarian cancer. Mol. Med Rep. 18, 3093–3098 (2018).
Google Scholar
Shang, Y. et al. Inhibition of HMGB1/TLR4 signaling pathway by digitoflavone: a potential therapeutic role in alcohol-associated liver disease. J. Agric Food Chem. 70, 2968–2983 (2022).
Google Scholar
Boothby, I. C. et al. Early-life inflammation primes a T helper 2 cell-fibroblast niche in skin. Nature 599, 667–672 (2021).
Google Scholar
Conrad, M. L., Renz, H. & Blaser, K. Immunological approaches for tolerance induction in allergy. Curr. Top. Microbiol Immunol. 352, 1–26 (2011).
Google Scholar
Unutmaz, D. & Pulendran, B. The gut feeling of Treg cells: IL-10 is the silver lining during colitis. Nat. Immunol. 10, 1141–1143 (2009).
Google Scholar
Chinen, T. et al. An essential role for the IL-2 receptor in T(reg) cell function. Nat. Immunol. 17, 1322–1333 (2016).
Google Scholar
Wong, H. S. et al. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 184, 3981–3997 e3922 (2021).
Google Scholar
Hirai, T. et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J. Clin. Invest. 131, e139991 (2021).
Wang, D. et al. Restoration of HBV-specific CD8(+) T-cell responses by sequential low-dose IL-2 treatment in non-responder patients after IFN-α therapy. Signal Transduct. Target Ther. 6, 376 (2021).
Google Scholar
Genshaft, A. S. et al. Single-cell RNA sequencing of liver fine-needle aspirates captures immune diversity in the blood and liver in chronic hepatitis B patients. Hepatology 78, 1525–1541 (2023).
Google Scholar
Zhang, C. et al. Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients. Gut 72, 153–167 (2023).
Google Scholar
Smith, L. K. et al. Interleukin-10 Directly inhibits CD8(+) T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 48, 299–312 e295 (2018).
Google Scholar
Gunderson, A. J. et al. TGFbeta suppresses CD8(+) T cell expression of CXCR3 and tumor trafficking. Nat. Commun. 11, 1749 (2020).
Google Scholar
Rivas, J. R. et al. Interleukin-10 suppression enhances T-cell antitumor immunity and responses to checkpoint blockade in chronic lymphocytic leukemia. Leukemia 35, 3188–3200 (2021).
Google Scholar
Huang, L. R., Wu, H. L., Chen, P. J. & Chen, D. S. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc. Natl Acad. Sci. USA 103, 17862–17867 (2006).
Google Scholar
Suda, T., Gao, X., Stolz, D. B. & Liu, D. Structural impact of hydrodynamic injection on mouse liver. Gene Ther. 14, 129–137 (2007).
Google Scholar
Tang, L. S. Y., Covert, E., Wilson, E. & Kottilil, S. Chronic Hepatitis B Infection: a Review. JAMA 319, 1802–1813 (2018).
Google Scholar
Huang, S. C. & Liu, C. J. Chronic hepatitis B with concurrent metabolic dysfunction-associated fatty liver disease: challenges and perspectives. Clin. Mol. Hepatol. 29, 320–331 (2023).
Google Scholar
Li, W., Han, J. & Wu, H. Regulatory T-cells promote hepatitis B virus infection and hepatocellular carcinoma progression. Chronic Dis. Transl. Med 2, 67–80 (2016).
Google Scholar
Mehraj, V., Ponte, R. & Routy, J. P. The dynamic role of the IL-33/ST2 axis in chronic viral-infections: alarming and adjuvanting the immune response. EBioMedicine 9, 37–44 (2016).
Google Scholar
Andoh, A. & Nishida, A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J. Gastroenterol. 58, 69–78 (2023).
Google Scholar
Cayrol, C. & Girard, J. P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 31, 31–37 (2014).
Google Scholar
Scott, I. C. et al. Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Sci. Rep. 8, 3363 (2018).
Google Scholar
Hasegawa, T., Oka, T. & Demehri, S. Alarmin cytokines as central regulators of cutaneous immunity. Front. Immunol. 13, 876515 (2022).
Google Scholar
Ameri, A. H. et al. IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. Proc. Natl Acad. Sci. USA 116, 2646–2651 (2019).
Google Scholar
Qin, L. et al. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia. Oncotarget 7, 61069–61080 (2016).
Google Scholar
Xu, L. et al. IL-33 induces thymic involution-associated naive T cell aging and impairs host control of severe infection. Nat. Commun. 13, 6881 (2022).
Google Scholar
Yu, M. et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26, 174–179 (2006).
Google Scholar
Chen, R. et al. Emerging role of high-mobility group box 1 (HMGB1) in liver diseases. Mol. Med 19, 357–366 (2013).
Google Scholar
Li, J. et al. HMGB1-induced autophagy facilitates hepatic stellate cells activation: a new pathway in liver fibrosis. Clin. Sci. (Lond.) 132, 1645–1667 (2018).
Google Scholar
Rizk, N. I., Sallam, A. M., El-Ansary, A. R. & El-Mesallamy, H. O. HMGB1 and SEPP1 as predictors of hepatocellular carcinoma in patients with viral C hepatitis: Effect of DAAs. Clin. Biochem 70, 8–13 (2019).
Google Scholar
Zhang, Y. et al. Elevated HMGB1 expression induced by hepatitis B virus X protein promotes epithelial-mesenchymal transition and angiogenesis through STAT3/miR-34a/NF-kappaB in primary liver cancer. Am. J. Cancer Res 11, 479–494 (2021).
Google Scholar
Chen, S. et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett. 394, 22–32 (2017).
Google Scholar
Shen, Z. et al. Hepatitis B virus persistence in mice reveals IL-21 and IL-33 as regulators of viral clearance. Nat. Commun. 8, 2119 (2017).
Google Scholar
Brunt, E. M. et al. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Prim. 1, 15080 (2015).
Google Scholar
Sheka, A. C. et al. Nonalcoholic steatohepatitis: a review. JAMA 323, 1175–1183 (2020).
Google Scholar
Brindley, P. J. et al. Cholangiocarcinoma. Nat. Rev. Dis. Prim. 7, 65 (2021).
Google Scholar
Tan, Z. et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol. Immunol. 15, 388–398 (2018).
Google Scholar
McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).
Google Scholar
Wang, W., Wu, J., Ji, M. & Wu, C. Exogenous interleukin-33 promotes hepatocellular carcinoma growth by remodelling the tumour microenvironment. J. Transl. Med 18, 477 (2020).
Google Scholar
Reissing, J. et al. Th2 Cell activation in chronic liver disease is driven by local IL33 and contributes to IL13-dependent fibrogenesis. Cell Mol. Gastroenterol. Hepatol. 17, 517–538 (2024).
Google Scholar
Yamagishi, R. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci. Immunol. 7, eabl7209 (2022).
Google Scholar
Xu, L. et al. The IL-33-ST2-MyD88 axis promotes regulatory T cell proliferation in the murine liver. Eur. J. Immunol. 48, 1302–1307 (2018).
Google Scholar
Giguere, J. F. & Tremblay, M. J. Statin compounds reduce human immunodeficiency virus type 1 replication by preventing the interaction between virion-associated host intercellular adhesion molecule 1 and its natural cell surface ligand LFA-1. J. Virol. 78, 12062–12065 (2004).
Google Scholar
Shrivastava-Ranjan, P. et al. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. mBio 9 (2018).
Espano, E. et al. Lipophilic statins inhibit Zika virus production in Vero cells. Sci. Rep. 9, 11461 (2019).
Google Scholar
Gorabi, A. M. et al. Antiviral effects of statins. Prog. Lipid Res 79, 101054 (2020).
Google Scholar
Iannacone, M. & Guidotti, L. G. Mouse models of hepatitis B virus pathogenesis. Cold Spring Harb Perspect Med. 5, a021477 (2015).
Hwang, J. R. & Park, S. G. Mouse models for hepatitis B virus research. Lab Anim. Res 34, 85–91 (2018).
Google Scholar
Lai, F., Wee, C. Y. Y. & Chen, Q. Establishment of humanized mice for the study of HBV. Front Immunol. 12, 638447 (2021).
Google Scholar
Uehara, T., Pogribny, I. P. & Rusyn, I. The DEN and CCl4 -induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma. Curr. Protoc. Pharm. 66, 14 30 11–14 30 10 (2014).
Google Scholar
Henderson, J. M. et al. Multiple liver insults synergize to accelerate experimental hepatocellular carcinoma. Sci. Rep. 8, 10283 (2018).
Google Scholar
Li, T. et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77, e108–e110 (2017).
Google Scholar