
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
Google Scholar
Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
Google Scholar
Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).
Google Scholar
Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).
Google Scholar
Chen, Y., Awasthi, A. K., Wei, F., Tan, Q. & Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772 (2021).
Google Scholar
OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. (Organisation for Economic Co-operation and Development, Paris, 2022).
Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).
Google Scholar
Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 10, 3559 (2019).
Google Scholar
Zhang, J., Wang, L. & Kannan, K. Microplastics in house dust from 12 countries and associated human exposure. Environ. Int. 134, 105314 (2020).
Google Scholar
Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).
Google Scholar
Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124 (2021).
Google Scholar
Blackburn, K. & Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio 51, 518–530 (2022).
Google Scholar
Van der Laan, L. J. W., Bosker, T. & Peijnenburg, W. J. G. M. Deciphering potential implications of dietary microplastics for human health. Nat. Rev. Gastroenterol. Hepatol. 20, 340–341 (2023).
Google Scholar
Ghosh, S. et al. Microplastics as an emerging threat to the global environment and human health. Sustainability 15, 10821 (2023).
Fleury, J.-B. & Baulin, V. A. Microplastics destabilize lipid membranes by mechanical stretching. Proc. Natl. Acad. Sci. 118, e2104610118 (2021).
Google Scholar
Ford, H. V. et al. The fundamental links between climate change and marine plastic pollution. Sci. Total Environ. 806, 150392 (2022).
Google Scholar
Andreoni, V., Saveyn, H. G. M. & Eder, P. Polyethylene recycling: waste policy scenario analysis for the EU-27. J. Environ. Manag. 158, 103–110 (2015).
Jia, L., Evans, S. & Linden, S. van der. Motivating actions to mitigate plastic pollution. Nat. Commun. 10, 4582 (2019).
Google Scholar
Herberz, T., Barlow, C. Y. & Finkbeiner, M. Sustainability assessment of a single-use plastics ban. Sustainability 12, 3746 (2020).
Single Use Packaging Market – Size, Share & Industry Report. (2023).
Gross, R. A. & Kalra, B. Biodegradable polymers for the environment. Science 297, 803–807 (2002).
Google Scholar
Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).
Google Scholar
Guicherd, M. et al. An engineered enzyme embedded into PLA to make self-biodegradable plastic. Nature 631, 884–890 (2024).
Google Scholar
Surendren, A., Mohanty, A. K., Liu, Q. & Misra, M. A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green. Chem. 24, 8606–8636 (2022).
Grushkin, D. Breaking the mold. Nat. Biotechnol. 29, 16–18 (2011).
Google Scholar
Bergeson, A. R., Silvera, A. J. & Alper, H. S. Bottlenecks in biobased approaches to plastic degradation. Nat. Commun. 15, 4715 (2024).
Google Scholar
Slezak, R., Krzystek, L., Puchalski, M., Krucińska, I. & Sitarski, A. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total Environ. 866, 161401 (2023).
Google Scholar
Royer, S.-J., Greco, F., Kogler, M. & Deheyn, D. D. Not so biodegradable: polylactic acid and cellulose/plastic blend textiles lack fast biodegradation in marine waters. PLOS ONE 18, e0284681 (2023).
Google Scholar
Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).
Google Scholar
Luzier, W. D. Materials derived from biomass/biodegradable materials. Proc. Natl. Acad. Sci. 89, 839–842 (1992).
Google Scholar
Akdoğan, E. et al. Accelerating the environmental biodegradation of poly-3-hydroxybutyrate (PHB) via plasma surface treatment. Bioresour. Technol. Rep. 25, 101719 (2024).
Wang, G., Huang, D., Ji, J., Völker, C. & Wurm, F. R. Seawater-degradable polymers—fighting the marine plastic pollution. Adv. Sci. 8, 2001121 (2020).
Gasparyan, K. G., Tyubaeva, P. M., Varyan, I. A., Vetcher, A. A. & Popov, A. A. Assessing the biodegradability of PHB-based materials with different surface areas: a comparative study on soil exposure of films and electrospun materials. Polymers 15, 2042 (2023).
Google Scholar
Kora, A. J. Leaves as dining plates, food wraps and food packing material: importance of renewable resources in Indian culture. Bull. Natl. Res. Cent. 43, 205 (2019).
Serbin, S. P. & Townsend, P. A. Scaling Functional Traits from Leaves to Canopies. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 43–82 (Springer International Publishing, Cham, 2020).
Jeong, J.-H. et al. Anti-Tumoral Effect of the Mitochondrial Target Domain of Noxa Delivered by an Engineered Salmonella Typhimurium. PLoS ONE 9, e80050 (2014).
Google Scholar
Parikh, B. H. et al. A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat. Commun. 13, 2796 (2022).
Google Scholar
Weems, A. C., Arno, M. C., Yu, W., Huckstepp, R. T. R. & Dove, A. P. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat. Commun. 12, 3771 (2021).
Google Scholar
Xu, J. & Song, J. High performance shape memory polymer networks based on rigid nanoparticle cores. Proc. Natl. Acad. Sci. 107, 7652–7657 (2010).
Google Scholar
Ham, H. O. et al. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A. Nat. Commun. 7, 11140 (2016).
Google Scholar
Chen, S. et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020).
Google Scholar
Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).
Google Scholar
Boyer, J. C., Taylor, L. W. & Nylander-French, L. A. Viability of cultured human skin cells treated with 1,6-hexamethylene diisocyanate monomer and its oligomer isocyanurate in different culture media. Sci. Rep. 11, 23804 (2021).
Google Scholar
Inventory of Effective Food Contact Substance (FCS) Notifications. (2022).
Inventory of Effective Food Contact Substance (FCS) Notifications. (2018).
Inventory of Effective Food Contact Substance (FCS) Notifications. (2018).
Liu, Y. et al. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci. Technol. 112, 532–546 (2021).
Carosio, F. et al. Efficient gas and water vapor barrier properties of thin poly(lactic acid) packaging films: functionalization with moisture resistant nafion and clay multilayers. Chem. Mater. 26, 5459–5466 (2014).
Anggarini, U. et al. A highly water-selective carboxymethylated cellulose nanofiber (CNF-CMC) membrane for the separation of binary (water/N2) and ternary (water/alcohols/N2) systems in vapor-permeation. J. Membr. Sci. 691, 122229 (2024).
Ustin, S. L. & Jacquemoud, S. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 349–384 (Springer International Publishing, Cham, 2020).
Wang, S., Ren, L., Liu, Y., Han, Z. & Yang, Y. Mechanical characteristics of typical plant leaves. J. Bionic Eng. 7, 294–300 (2010).
Ruzi, M., Celik, N. & Onses, M. S. Superhydrophobic coatings for food packaging applications: a review. Food Packag. Shelf Life 32, 100823 (2022).
Rio, E. & Boulogne, F. Withdrawing a solid from a bath: How much liquid is coated?. Adv. Colloid Interface Sci. 247, 100–114 (2017).
Google Scholar
Puetz, J. & Aegerter, M. A. Dip Coating Technique. in Sol-Gel Technologies for Glass Producers and Users (eds. Aegerter, M. A. & Mennig, M.) 37–48 (Springer US, Boston, MA, 2004)..
Rbihi, S., Aboulouard, A., Laallam, L. & Jouaiti, A. Contact angle measurements of cellulose based thin film composites: wettability, surface free energy and surface hardness. Surf. Interfaces 21, 100708 (2020).
Strutynski, C. et al. 4D Optical fibers based on shape-memory polymers. Nat. Commun. 14, 6561 (2023).
Google Scholar
Zhang, J. et al. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38, 8012–8021 (2005).
Google Scholar
Echeverría, C., Limón, I., Muñoz-Bonilla, A., Fernández-García, M. & López, D. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers. Polymers 13, 2860 (2021).
Google Scholar
Jokar, M., Abdul Rahman, R., Ibrahim, N. A., Abdullah, L. C. & Tan, C. P. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol. 5, 719–728 (2012).
Yang, H., Jacucci, G., Schertel, L. & Vignolini, S. Cellulose-based scattering enhancers for light management applications. ACS Nano 16, 7373–7379 (2022).
Google Scholar
Reddy, I. V. A. K. et al. Ultrabroadband terahertz-band communications with self-healing Bessel beams. Commun. Eng. 2, 1–9 (2023).
Hutchinson, M. H., Dorgan, J. R., Knauss, D. M. & Hait, S. B. Optical properties of polylactides. J. Polym. Environ. 14, 119–124 (2006).
Ward, C. P. & Reddy, C. M. We need better data about the environmental persistence of plastic goods. Proc. Natl. Acad. Sci. 117, 14618–14621 (2020).
Google Scholar
Wurzbacher, C. E. et al. Planctoellipticum variicoloris gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from wastewater of the aeration lagoon of a sugar processing plant in Northern Germany. Sci. Rep. 14, 5741 (2024).
Google Scholar
Boedeker, C. et al. Determining the bacterial cell biology of Planctomycetes. Nat. Commun. 8, 14853 (2017).
Google Scholar
Wang, L. et al. Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their Applications. Biomacromolecules 22, 4037–4059 (2021).
Google Scholar
Delgado-Aguilar, M. et al. Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications. BioResources 10, 5345–5355 (2015).
Wellenreuther, C., Wolf, A. & Zander, N. Cost competitiveness of sustainable bioplastic feedstocks – A Monte Carlo analysis for polylactic acid. Clean. Eng. Technol. 6, 100411 (2022).
Wimberger, L., Ng, G. & Boyer, C. Light-driven polymer recycling to monomers and small molecules. Nat. Commun. 15, 2510 (2024).
Google Scholar
US polyethylene price evolution and what to expect | McKinsey. https://www.mckinsey.com/industries/chemicals/our-insights/us-polyethylene-price-evolution-and-what-to-expect.
Liu, W., Wu, X., Chen, X., Liu, S. & Zhang, C. Flexibly Controlling the Polycrystallinity and Improving the Foaming Behavior of Polylactic Acid via Three Strategies. ACS Omega 7, 6248–6260 (2022).
Google Scholar
Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959).